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Abstract
An explanation is proposed for a non-unique dependence of the dynamic contact
angle on the wetting speed observed experimentally for some liquid–solid
systems at low wetting speeds. The key idea is that the flow pattern near
the wetting line, which follows from previously developed theory, suggests the
possibility of a microscopic mass flux from the three-phase-interaction zone
into the bulk thus causing ‘imperfect rolling’ of the spreading liquid. The
resultant ‘starvation’ of the liquid–solid interface gives rise to a higher value of
the contact angle. The above flow pattern turns into the regular one at a certain
wetting speed thus determining the region where the metastable regimes of
wetting can be observed.

1. Introduction

A few years ago Blake [1] described a specific regime of dynamic wetting, where at low contact-
line speeds (about 1 mm s−1) the dynamic contact angle formed by the free surface of water on
polyethylene terephthalate (PET) ‘began to alternate between values on a steep curve and low
values on a much shallower curve. The unsteadiness died out at about 10 cm s−1, and the data
then rose smoothly on the shallower curve up to the maximum wetting velocity’. The data are
shown as open circles in figure 1. Pictorially, the process looked as if one or more ‘zippers’
were moving along the contact line switching the dynamic contact angle from one value to the
other [2]. The time spent by the contact angle in each position was quite macroscopic [2] and
sufficient for carrying out the measurements, so that one can talk about two metastable regimes
of dynamic wetting. Two important features of this phenomenon, which we should keep in
mind in what follows, are that (a) it takes place for some gas/liquid/solid systems and (b) only
at low contact-line speeds.

In the present paper, we try to give a possible qualitative explanation for this effect in the
framework of the theory [3–6], which approaches dynamic wetting as a particular case of a
more general physical phenomenon; the process by which an interface forms or disappears
during flow. As a starting point, we will examine the properties of solutions of the moving
contact-line problem already obtained using the simplest model formulated on the basis of
the above approach. The idea is to find out whether there are regions in the parameter space
specifying a gas/liquid/solid system, where at low contact-line speeds the solution exhibits
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Ca

Figure 1. Experimental data for water on PET (open circles) and theoretical curves (solid curves).
In the region between Ca ≈ 10−5 and Ca ≈ 10−3, the experimentally measured dynamic contact
angle alternates between a steep curve and a more shallow one; the data shown in this region
represent the configuration of the system for the majority of time. At the higher contact-line
speeds, the contact angle rises steadily above the shallow curve. Curves 1, 2 and 3 are generated
theoretically with αβ = 0.082 and K∗ = 5.5 × 106, 2.0 × 106 and 0, respectively.

features which could indicate the physical mechanisms responsible for metastability. Then we
will consider a possible way of incorporating these mechanisms into the theory.

2. Model

First, we will briefly recapitulate the main points of the theory developed in [3–6] in its
application to the simplest case of the spreading of an incompressible Newtonian liquid over a
perfectly smooth chemically homogeneous solid surface. We will be considering the flow on
a macroscopic (hydrodynamic) length scale where the distributions of velocity u and pressure
p in the bulk are described by the Navier–Stokes equations

∇ · u = 0 ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · P P = −pI + µ

(∇u + (∇u)T
)
. (1)

Here ρ and µ are the density and viscosity of the liquid; P and I are the stress and metric
tensors, respectively.

The classical boundary conditions, which are normally used to specify solutions of (1)
in particular flow geometries, include the no-slip condition at the solid boundary and the
impermeability condition together with the balance of normal and tangential stresses acting
on a liquid element at the free surface [7]. These conditions made it possible to specify a
great number of solutions which accurately described numerous experimental observations.
However, as is known [8], the classical formulation fails to adequately describe flows which
involve moving contact lines. Indeed, in the general case, no solution to the problem exists,
whilst a simplified formulation, where the normal stress boundary condition is dropped and
the free-surface shape prescribed, leads to the solution exhibiting a non-integrable shear-stress
singularity at the contact line [8]. In addition to this, the dynamic contact angle has to be found
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as part of the solution and experiments show that its dependence on the flow and material
parameters of the system is far from being trivial [1, 9].

To overcome the problem, a number of models have been proposed in the literature in
the past three decades (see [6] for a comprehensive review) with the result being twofold:
(a) all proposed theories remove the shear stress singularity (by introducing slip on the solid
boundary of one form or another) and (b) none is able to describe the behaviour of the
dynamic contact angle observed in experiments, especially the recently discovered effect of
‘hydrodynamic assist’ of dynamic wetting [9, 10]. It should also be mentioned that the ways
in which the shear-stress singularity is removed lead to the flow kinematics in the theory being
qualitatively different from what is observed in experiments, thus casting serious doubt on the
very foundations of the theory.

A theory originated a decade ago [11] and developed further in [3–6] is, so far, the only
one which survives the experimental tests. Its basic idea is as follows. Dynamic wetting is
essentially the process by which the liquid–gas interface disappears as it passes through the
three-phase-contact line and the liquid–solid interface forms1. This type of motion, known as
‘rolling’ and observed experimentally [8, 10, 12], and the resulting interface disappearance–
formation process lead to the situation where the fluid particles belonging to the interface have
to change their ‘surface’ properties (first of all the surface tension) from one equilibrium value
to another. In other words, dynamic wetting is a particular case of a more general physical
phenomenon, namely the process of interface formation (or/and disappearance), and has to be
addressed from this viewpoint. On a macroscopic length scale, the essence of this process is
the mass, momentum and energy exchange between the surface and bulk phases as a response
to the variation in the equilibrium properties of the interface (which, from a microscopic point
of view, result from the variation in the molecular forces experienced by the interface from the
bulk phases).

Macroscopically, one can describe the mass, momentum and energy fluxes between
the surface and bulk phases in the framework of irreversible thermodynamics [13, 14] and
use Onsager’s principle of proportionality between thermodynamic forces and fluxes to
ensure positiveness of the entropy production and hence to close the set of equations. The
phenomenological coefficients of proportionality introduced by this procedure have to be
determined either experimentally or by considering the process on a microscopic length scale
and the corresponding averaging of the microscopic quantities. The derivation sketched above
is described in [3] and leads to the following boundary conditions for the Navier–Stokes
equations2. At the free surface one has [3–5]

n · P · n + p0 = σ1∇ · n (2)

(I − nn) · P · n + ∇σ1 = 0 (3)

σ1 = γ (ρs
0 − ρs

1) (4)
∂ρs

1

∂t
+ ∇ · (ρs

1v
s
1) = −ρ

s
1 − ρs

1e

τ
(5)

(1 + 4αβ)∇σ1 = 4β(vs
1 − u) (6)

while the boundary condition at the solid surface take the form

(I − nn) · P · n + 1
2∇σ2 = β(u − U) (7)

σ2 = γ (ρs
0 − ρs

2) (8)

1 The very term ‘dynamic wetting’ implies formation of a ‘wetted’ solid surface, i.e a fresh liquid–solid interface.
2 It should be pointed out, however, that this derivation, as well as any derivation of the mathematical model of a
physical phenomenon, should be seen merely as a set of plausible self-consistent assumptions, and a reader familiar
with continuum mechanics can understand the model simply by examining the boundary conditions themselves.
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∂ρs
2

∂t
+ ∇ · (ρs

2v
s
2) = −ρ

s
2 − ρs

2e

τ
(9)

vs
2 = 1

2 (u + U) + α∇σ2. (10)

Here n is the unit inward normal to the interface; p0 is the pressure in the (inviscid) gas
surrounding the fluid; σ , ρs and vs are the surface tension, surface density and the velocity
with which the fluid in the surface phase is transported, respectively; U is the velocity of
the solid surface; the subscripts 1 and 2 refer to the surface parameters of the liquid–gas and
liquid–solid interface, respectively; α, β, γ , τ , ρs

1e, ρs
2e and ρs

0 are phenomenological constants.
The surface parameters and the vector n are defined only at interfaces, so that their derivatives
in the normal direction are zero.

The boundary conditions (2) and (3) at the free surface are standard; they express,
respectively, the normal and tangential momentum balance of a free-surface element.
Equations (4) and (8) are the equations of state in the surface phase which are taken here
in the simplest form relating the surface tension and the surface density. This form is intended
to reflect only the basic property of the interface, namely that its rarefaction in contact with a
gas (ρs < ρs

0) corresponds to the surface tension whilst, in the case of a liquid–solid interface,
a layer of liquid adjacent to the solid surface can be both rarefied or compressed depending on
the wettability of the solid. Hence the surface tension there can be either positive or negative.
The constant γ therefore is inversely proportional to the compressibility of the liquid, and ρs

1e
and ρs

2e denote the equilibrium values of the surface density at the free-surface and liquid–solid
interface, respectively. A general qualitative form of the surface equation of state is described
in [3].

The surface mass balance equations (5) and (9) have a term on the right-hand side
describing the mass exchange between the surface phase and the bulk. This process is driven
by the difference in the chemical potentials in the surface and bulk phases and, for small
deviations of the surface densities from their equilibrium values, the relaxation time τ is given
by

τ = 1

kρ
dηs

dρs (ρ
s
1e)

where kρ is the Onsager coefficient associated with the mass transfer between the bulk and the
surface phase and ηs is the chemical potential in the surface phase.

Equation (7) is the generalized Navier condition which is a direct consequence of two
simple facts: (a) if inertia of an element of the liquid–solid interface is neglected, then all
the forces acting on this element, that is the shear stress from the liquid, the drag force from
the solid and the surface-tension gradient due to the adjacent elements of the interface, are
in equilibrium, and (b) the velocity difference across the interface (as well as across any thin
layer of fluid) is proportional to the external torque acting on it [15]. This physical meaning
suggests that the coefficient β should be proportional to the fluid’s viscosity and inversely
proportional to the thickness of the layer. A comparison with experiments shows that this is
indeed the case [16].

Finally, (6) and (10) relate the surface-tension gradients with the velocity in the interfacial
layer and the bulk velocities evaluated at its boundaries. One can easily understand these
conditions by looking at an analogy between the flow in an interface and that in a plane
channel. For example, (10) has the same form as the Darcy law for flows in thin channels or
porous media.

It should be emphasized that conditions (2)–(6) and (7)–(10) are the simplest ones one
can self-consistently derive in the framework of the approach outlined above and the seven
coefficients, γ , ρs

0, ρs
1e, ρs

2e, α, β, τ , are the minimum one can expect. Indeed, the two
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parameters γ and ρs
0 are the minimum for the simplest (linear) equation of state in the surface

phase; two constants ρs
1e and ρs

2e are required to specify the equilibrium state of the liquid–gas
and liquid–solid interface, respectively; α, β and τ are associated with the Onsager coefficients
corresponding to the three basic physical mechanisms, namely the response of the interface (a)
to the surface-tension gradient, (b) to the external torque, and (c) the mass exchange between
the interface and the bulk. No cross-effects have been taken into account. All coefficients
involved have clear physical meaning and can be determined either through the corresponding
microscopic modelling or from experiments. The details of the derivation, a discussion on
possible generalizations of the model and the ways its parameters can be measured one can
find elsewhere [3–5].

To model dynamic wetting, one has to specify conditions at the moving contact line which
the functions describing distributions of the surface parameters along the interfaces must satisfy.
The first condition is universal and expresses the balance of tangential projections of forces
acting on the contact line as follows:

σ1 cos θd = σSG − σ2. (11)

Here θd is the dynamic contact angle measured through the liquid. In the static situation, (11)
takes the form of the classical Young’s equation [17]

σ1(ρ
s
1e) cos θs = σSG − σ2(ρ

s
2e) (12)

where θs is the static contact angle formed by the interfaces. In our case, this equation gives
an extra constraint and allows one to eliminate, say, σSG and use the measurable quantity θs

instead. It should be emphasized that (12) and, in the dynamic situation, (11) introduce the
very concept of ‘contact angle’ into macroscopic fluid mechanics and hence have to be part of
any macroscopic model of wetting phenomena.

The mass balance condition at the contact line is less trivial since it must account for
various possible physical mechanisms causing mass fluxes into and out of the three-phase-
interaction region, which is modelled macroscopically as the ‘contact line’. It is this condition
which should be subject to modifications first of all if the behaviour of the macroscopic contact
angle θd exhibits any unusual features. In the simplest case, we can assume that the fluxes into
and out of the contact line are equal as follows:

ρs
1v

s
1 · ef = ρs

2v
s
2 · eg. (13)

Here ef and eg are the unit vectors normal to the contact line and tangent to the gas–liquid and
gas–solid interface, respectively; θd = arccos(−ef · eg).

One has also to formulate some conditions in the far field which will specify a particular
flow.

3. ‘Regular’ wetting

The model outlined above makes it relatively easy to explain the main features of dynamic
wetting. Since the surface-tension relaxation process is not instantaneous, the ‘rolling’ flow
gives rise to the surface-tension gradient along the liquid–solid interface. The result is that,
firstly, the values of the surface tensions at the contact line are not equal to the equilibrium
values far away from it, and hence, by comparing Young’s equations (11) and (12), one finds
that θd �= θs and θd varies with the contact-line speed and other flow parameters. Secondly,
the surface-tension gradient has a reverse influence upon the flow that caused this gradient to
appear, leading to the flow-induced Marangoni effect. An important feature of the model is that
the contact angle is linked with the distributions of the surface parameters along the interfaces
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which, in their turn, are interrelated with the bulk flow. This makes the dynamic contact angle
ultimately dependent on the flow near the moving contact line, that is the essence of the so-
called ‘hydrodynamic assist’ of dynamic wetting recently discovered experimentally [9, 10].
The present model is the only one so far that accounts for this effect.

The problem formulation (1)–(13) is rather difficult to tackle mathematically and in a
general case has to be treated numerically. However, there is an important case where one
can arrive at useful analytical results. For steady flows, it has been shown [3–6] that, if the
characteristic length scale of the flow L is large compared with the surface tension relaxation
length l = Uτ (U is the contact-line speed with respect to the solid surface), then in the case
of small capillary numbers Ca ≡ µU/σ1(ρ

s
1e) 
 1, one can divide the flow domain into the

following three asymptotic regions as ε ≡ l/L and Ca tend to zero:

(i) The ‘outer’ region with the characteristic length L, where (2)–(10) degenerate into the
classical boundary conditions and the problem reduces to that of a flow in a corner
region [18];

(ii) The ‘intermediate’ region with the characteristic length scale l, where the surface-tension
relaxation takes place while, due to Ca 
 1, viscous effects are asymptotically negligible
compared to the capillary ones, and hence the interfacial properties are decoupled from
those of the bulk flow;

(iii) The ‘inner’ or ‘viscous’ region with the characteristic length scale εl, where viscous
effects become comparable with capillarity, but the asymptotically small size of this
region compared to the surface-tension relaxation length, l, ensures that the variations
in the surface parameters are negligible, and hence the boundary conditions at the contact
line (11) and (13) can be applied to the surface distributions in the intermediate region.

As a result of the above simplifications, after standard mathematics one obtains that to
the leading order the liquid–gas interface is in equilibrium up to the contact line (ρs ≡ ρs

1e)
and the velocity with which the free surface enters the three-phase-interaction region (i.e. the
‘contact line’) is equal to that in the outer region. The latter is well known [18] and, scaled
with the contact-line speed U , is given by

ū0(θd) = sin θd − θd cos θd

sin θd cos θd − θd
. (14)

Then the problem of modelling the contact-angle behaviour becomes reduced to finding the
distributions of the surface parameters along the liquid–solid interface in the intermediate
region from a set of ordinary differential equations resulted from (7)–(10), where the term
(I − nn) · P · n, being proportional to Ca, is neglected, u is eliminated and σ2 expressed in
terms of ρs

2 using (8) as follows:

d(ρ̄s
2v̄

s
2)

dr
= −(ρ̄s

2 − ρ̄s
2e) (15)

dρ̄s
2

dr
= 4V 2(1 − v̄s

2). (16)

Here r is the distance from the contact line scaled with the surface-tension relaxation length l,
ρ̄s

2 = ρs
2/ρ

s
0, v̄s

2 = vs
2/U and

V = U
(

τβ

γρs
0(1 + 4αβ)

)1/2

(17)

is the dimensionless contact-line speed. The solution of (15) and (16) must satisfy the
equilibrium condition in the far field

ρ̄s
2 → ρ̄s

2e as r → +∞ (18)
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together with the boundary conditions (11) and (13) which now take the form

cos θd − cos θs = ρ̄s
2(0)− ρ̄s

2e

1 − ρ̄s
1e

(19)

ρ̄s
2(0)v̄

s
2(0) = −ρ̄s

1eū0(θd) (20)

where ρ̄s
1e = ρs

1e/ρ
s
0 and ū0(θd) is given by (14). The three conditions (18)–(20) allow one

to determine two constants of integration together with θd. For small deviations of ρ̄s
2 from

ρ̄s
2e one can simplify the problem even further, linearize (15)–(20) and arrive at an analytical

relationship between V and θd of the following form:

V = 1
2G

(
ρ̄s

2e

F(F −G)
)1/2

(21)

where

F = ρ̄s
2e + ρ̄s

1eū0(θd)

1 − ρ̄s
1e

G = cos θs − cos θd.

If the gas-to-liquid viscosity ratio kµ has to be taken into account (θd is sufficiently close to
180◦) (21) will still be valid with contributions from the outer solution ū0(θd) replaced by its
generalization [6]

ū0(θd, kµ) = (sin θd − θd cos θd)K(θ2)− kµ(sin θ2 − θ2 cos θ2)K(θd)

(sin θd cos θd − θd)K(θ2) + kµ(sin θ2 cos θ2 − θ2)K(θd)
(22)

where θ2 = π−θd andK(θ) = θ2 − sin2 θ . Then, ū0(θd) given by (14) becomes just ū0(θd, 0)
in (22).

The velocity dependence of the dynamic contact angle given by (21) is shown to be in
good agreement with experiments for different liquids in the absence of metastability [3, 6].

4. Metastability

Clearly, (21) sets a one-to-one correspondence between the contact-line speed (V or Ca)
and the dynamic contact angle θd for the given values of parameters and a given overall
flow geometry (the latter manifests itself in ū0 that comes from the solution for a flow in a
wedge region). However, experiments reported in [1] show that for some fluids there exists
a interval of the contact-line speeds where dynamic wetting exhibits rather unusual features.
The process becomes unsteady and the contact angle starts to alternate between two different
values (figure 1). The frequency of these oscillations is small compared with 1/τ so that,
from the point of view of the interface formation, these two contact angles can be regarded
as corresponding to two steady metastable regimes of wetting. One can plot the data in the
same θd versus Ca coordinate plane (figure 1) having in mind that, as the contact-line speed
increases, the contact angle spends less and less time on the steep curve until the metastability
finally dies out and the process becomes steady again with the contact angle rising along the
shallow curve.

In an attempt to understand and macroscopically describe the metastable regimes, we can
employ the theory of dynamic wetting as an interface formation process, that provides not
only the simplest mathematical model outlined above but, more importantly, the conceptual
framework for generalizations incorporating extra physical mechanisms. One can look for a
clue to what is observed in experiments in the flow patterns associated with the regions in the
parameter space which could be correlated with the conditions under which the metastability
takes place.
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Figure 2. Flow patterns: (a) with a vortex near the contact line occurring in a certain range of the
parameter space at low contact-line speeds only; (b) a regular-flow pattern. The flow associated
with the separating stream line can cause a ‘leak’ from the origin.

An interesting peculiarity of the flow field reported earlier [5] is that, besides a regular
pattern shown in figure 2(b), in a certain region of the parameter space (that is physically for
some gas/liquid/solid systems) and only at low contact-line speeds, the theory predicts a flow
pattern shown in figure 2(a). In this case, there appears a vortex near the contact line, and one
of the stream lines comes out from the origin3. The physical reason behind this macroscopic
feature is the flow-induced Marangoni effect. The overall rolling motion of the fluid gives
rise to a surface-tension gradient along the liquid–solid interface which in its turn influences
the flow. The main effect of the surface-tension gradient is on the velocity distribution on the
liquid-facing side of the liquid–solid interface, which is the boundary condition for the bulk
flow. For the given distributions of the surface parameters, this boundary condition follows
from (10).

For some liquids at low contact angles the effect of the surface tension gradient is so
strong compared to the bulk flow that it causes a reverse flow on the liquid-facing side of the
liquid–solid interface, thus creating a vortex near the moving contact line. Schematically, the
flow in the interfacial layers is shown in figure 3: convergent flow towards the contact line on
the liquid-facing sides of interfaces gives rise to a flow directed away from the contact line.

As the contact-line speed increases, the recirculation region contracts and eventually
disappears giving way to the regular flow pattern shown in figure 2(b).

A qualitative resemblance between the conditions required for the vortex near the moving
contact line to appear in the theory and those associated with the metastable regimes of wetting
described in the experiments [1] suggests looking at the former for a physical mechanism
responsible for the latter. More specifically, it seems reasonable to assume that the flow pattern
shown in figure 2(a) can trigger an additional mass flux out of the viscous region which should
be taken into account while applying condition (11) to the inner limits of the distributions of
the surface parameters in the intermediate region. To put it pictorially, the flow from the origin
will tend to ‘suck’ fluid from the interface into the bulk thus affecting the surface mass balance
condition (13) and through (4), (11) influencing the dynamic contact angle. This argument

3 For a flow in the intermediate region (2 in figure 3), the ‘origin’ is the viscous region (3 in figure 3) and not the
contact line itself.
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Figure 3. A definition sketch for the flow-induced Marangoni effect. The fluid particles initially
belonging to the free surface are driven through the three-phase-interaction region and become
elements of the liquid–solid interface. The resulting surface-tension gradient along the this interface
affects the velocity distribution in the interfacial layer. For some regimes this effect causes the
reverse flow on the liquid-facing side of the interface thus giving rise to the recirculation zone
shown in figure 2(a).

suggests replacing (13) with the condition

ρs
1v

s
1 · ef = ρs

2v
s
2 · eg +W (23)

where W is an additional mass flux, that is a ‘leak’ from the interface into the bulk. This
mass flux should depend on the same factors as those causing the recirculation. We can use
the dimensionless velocity at the origin on the separating stream line u∗ (see figures 2(a), 3)
as a measure of recirculation. Then, by correlating W with u∗ one will model the effect of
‘sucking’ the fluid from the origin into the bulk.

In the formulation (1)–(11)u∗ is a function of five parametersu∗ = f (V, θs, ρ
s
1e, σSG, αβ).

It can be calculated as follows. Once v̄s
2 and ρ̄s

2 (and hence σ2) are known from (15)–(20), one
can find from (10) the bulk velocity on the liquid-facing side of the liquid–solid interface ū as
a function of r . For this function one has

lim
r→0
ū(r) = 1 − (1 − ρ̄s

1e)(cos θs − cos θd)[(V 2 + ρ̄s
2e)

1/2 − V ]

V ρ̄s
2e(1 + 4αβ)

. (24)

Thus, to find the flow near the origin one has to solve the biharmonic equation[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2

]2

ψ = 0

for the stream function ψ , introduced by

ur = 1

r

∂ψ

∂θ
uθ = −∂ψ

∂r

(ur , uθ are, respectively, the radial and transversal components of the bulk velocity), in a wedge
region 0 < θ < θd, 0 < r < +∞ subject to the following boundary conditions:

ψ(r, 0) = ψ(r, θd) = 0

1

r

∂ψ

∂θ
(r, θd) = u1 = ū0(θd)

1

r

∂ψ

∂θ
(r, 0) = u2 = 1 − (1 − ρs

1e)(cos θs − cos θd)[(V 2 + ρs
2e)

1/2 − V ]

Vρs
2e(1 + 4αβ)

.

(25)
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The solution to this problem can easily be found in the form ψ = r F (θ), where F(θ) =
−2C1 sin2 θ + C2 sin 2θ + C3θ , and the constants C1, C2, C3 are given by

C1 = u1(sin 2θd − 2θd) + u2(2θd cos 2θd − sin 2θd)

8 sin θd(θd cos θd − sin θd)

C2 = u1 sin θd + u2(2θd − sin θd)

4(θd cos θd − sin θd)
C3 = 2 sin2 θd

θd
C1 − sin 2θd

θd
C2.

Then, the angle θ∗ formed by the separating stream line at the origin and the solid surface is
determined from F(θ∗) = 0 and the velocity we are looking for is given by

u∗(θ∗) = F ′(θ∗). (26)

Now one can replace (13) for the inner limits of the distributions in the intermediate region
with (23) and use

W = K∗u2
∗(θ∗) (27)

as a simple dependence of the flux into the bulk,W , on the measure of the rate of recirculation
u∗. Replacing (20) with (23), (27), where u∗ is given by (26), one arrives at a qualitative
behaviour of the θd versus V theoretical curve similar that observed experimentally.

Although the goal of the present work is to look for the physical mechanisms responsible
for metastability at a qualitative level, it is interesting to attempt to fit the macroscopic
dependence of θd on Ca to the experimental data ‘semi-quantitatively’, ie by usingK∗ and αβ
as adjustable parameters. This attempt can be carried out in the following two steps. Firstly,
one can fit the theoretical curve generated by (15)–(20), ie with K∗ = 0, to the data in figure1
corresponding to stable high-velocity wetting (Ca > 0.01). This can be done by employing
the procedure described in [3] and specifying the values of ρ̄s

1e (= 0.59), σ̄SG (= 0) and the
scaling factor Sc = V/Ca (= 4.17), that relates the contact-line speed scaled with the surface
parameters of the model (17) to the capillary number, which is effectively the contact-line speed
scaled with σ1eµ

−1. To account for the gas-to-fluid viscosity ratio (=0.0181), we used (22)
instead of (14).

The second step is to keep the values of ρ̄s
1e, σ̄SG and Sc determined in the first step,

replace (20) with (23), (27) and use αβ and K∗ as adjustable constants trying to describe the
whole set of experimental data presented in figure 1, including the region corresponding to
metastable regimes. The parameterK∗ will then affect only the maximum value θmeta reached
by the contact angle in the metastable region. The product αβ, which influences u∗ via (25),
also affects θmeta through (27) and it is the only factor determining the velocity at which u∗
becomes equal to zero and hence the metastability dies out.

The results of the above two-step procedure are shown in figure 1. Curves 1, 2 and 3
correspond to αβ = 0.082 and K∗ = 5.5 × 106, 2 × 106 and 0, respectively. One can see
that the curves in figure 1 do describe the behaviour of the experimental data. Interestingly,
the value of αβ = 0.082 is only 2% smaller than 1/12, which would follow from the analogy
between the flow in the interfacial layer and the Couette–Poiseuille flow in a plane channel [3].

It should be emphasized that the qualitative agreement between theory and experiment
is not specific to the form (23) chosen for W ; qualitatively similar results can be obtained
using any smooth monotonically increasing function W(u∗) instead. The reason is that, in
dimensional terms, the recirculation zone increases with Uu∗ and hence between the limits
U = 0 (no motion) and u∗ = 0 (no recirculation, figure 2(a)) any monotonically increasing
function W(u∗) will give rise to a branch in the θd-versus-Ca plane with a higher value of θd

than forW ≡ 0.
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5. Discussion

It is clear that, since metastability of dynamic wetting manifests itself through the behaviour
of the macroscopic dynamic contact angle, which in turn is determined by the balance of
the surface forces acting on the three-phase-contact line, one has to look into processes in
this region for the ultimate cause of the metastability. The present work suggests that the
macroscopic outcome of the processes in the three-phase-interaction zone is that the transition
of the liquid–gas interface into the liquid–solid one can take place with sporadic losses of the
‘interfacial material’ into the bulk and the resulting ‘starvation’ of the forming liquid–solid
interface. This creates extra tension which drives the contact angle up. According to the present
results, the release of the fluid particles belonging to the interface into the bulk can be triggered
by the Marangoni effect on the liquid–solid interface and hence should be broadly proportional
to the factors responsible for this effect. What macroscopic theory cannot answer is what the
nature of this proportionality is, what microscopic mechanisms compete in the region of the
parameter space where the metastability is observed, and what physical properties of the gas-
liquid–solid system determine the effect quantitatively. Blake’s tentative explanation of the
effect [1] in terms of his molecular-kinetic theory [19] refers to a possibility of ‘strong’ or
‘weak’ interactions respectively of a fewer or greater number of the fluid’s molecules with the
solid being the reason for the two regimes observed experimentally. This explanation, that is
broadly compatible with the macroscopic picture given in the present work, can perhaps be
seen as an insight into and a step towards the understanding of the microscopic nature of this
type of metastability but, of course, not as the solution to the problem. The questions raised
in this paper require a comprehensive study on the microscopic level, perhaps, by means of
statistical physics or molecular-dynamics simulations.

Finally, it should be pointed out that, according to previous experiments [9], the dynamic
contact angle is dependent on the flow field in the bulk. Theoretically, this follows from the
fact that the macroscopic contact angle is determined by the balance of the surface tensions
acting on the contact line (11) whilst the surface-tension distributions along the interfaces are
linked to the shear stress by the conditions requiring the balance of forces acting on every
element of the interface (3), (7). The way in which the metastable regimes of wetting are
addressed in the present paper indicates that one should perhaps look at the role played by the
normal stress and its influence on the mass exchange between the interface and the bulk. The
model’s derivation [3] suggests that the normal stresses can act together with the difference
of the chemical potentials in the surface and bulk phase which makes this idea plausible.
The problem then is how to apply this general idea to the possibility of a mass flux from the
three-phase-interaction zone, where, strictly speaking, one can specify only the limits of the
surface parameter distributions. This issue is also beyond the reach of continuum mechanics
modelling and has to be addressed from a microscopic point of view.
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